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Apache Kafka is a cornerstone of many streaming data projects. However, 

it is only the first step in the potentially long and arduous process of 

transforming streams into workable, structured data. How should you 

design the rest of your data architecture to build a scalable, cost effective 

solution for working with Kafka data? Let’s look at two approaches - 

reading directly from Kafka vs creating a data lake - and understand when 

and how you should use each.

WHO SHOULD READ THIS?
● Data architects looking to build effective infrastructure for analyzing 

streaming data 

●  Engineering managers building data pipelines from Apache Kafka 

(or Amazon Kinesis) to analytic applications such as Apache Presto 

● Anyone who wants to gain more value from analyzing Kafka data
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Kafka: The Basics

Let’s start with an (extremely) brief explanation of how Apache Kafka 

works. Apache Kafka is open-source software used to process 

real-time data streams, designed as a distributed transaction log. 

Streams can be produced by any number of tools or processes, with 

each record consisting of a key, a value and a timestamp. Records are 

stored chronologically in partitions, which are then grouped into 

topics. These can be read by various consumer groups:

The Present and Future of Alooma 
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Kafka provides a robust, reliable and highly scalable solution for 

processing and queueing streaming data, and is probably the most 

common building block used in streaming architectures. 

But what do you do once you have data in Kafka, and how do you get 

it into a form that developers and data analysts can actually work 

with? In the next part of this article, we’ll explain why the answer to 

that question, in most cases, is to build a data lake
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Without a Data Lake: Reading Directly 
from Kafka

A lot of organizations look at the neatly partitioned data going into 

their Kafka clusters and are tempted to just read that data directly. 

While this might sound like an easy fix with minimal data plumbing, it 

also has major drawbacks that all stem from the fact that Kafka is a 

system that is highly optimized for writing and reading fresh data. 

This means that:

Producing is easy… 

● Unlimited writes: Kafka stores events on one large file on disk, 

and that file is appended sequentially as new events are 

processed. This system enables it to achieve truly incredible 

feats such as completing two million writes per second on three 

cheap machines. 

● High reliability: Even without too much tweaking, Kafka is 

highly fault-tolerant and writes just work - you don’t need to 

worry about losing relevant events

● Strong ordering within a partition: Data is ordered 

sequentially; if two consumers read the same partition, they 

will both read the data in the same order. This means that 

multiple, unrelated consumers will see the same ‘reality’ - 

which can be extremely important in some cases (e.g. when 
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assigning workloads).

● Exactly-once writing: Kafka 0.11 introduced exactly-once 

writing, which is very handy as a means of reducing efforts on 

the consumer side.

…but consuming is hard (and expensive!):

● Retention is 10X-100X more expensive compared to using 

cloud storage: Storing historical data on Kafka clusters can 

quickly drain your IT budget. Kafka stores multiple copies of 

each message on expensive hard drives connected to servers. 

Both of these factors contribute to at least 10x the bottom line 

compared to storing the data on a data lake such as Amazon S3.

● Risk to production environments: Reading from Kafka in 

production is not great: every additional consumer 

drains resources and slows performance, while reading 

“cold” data will likely cause cache misses. 

● Waste of compute resources: Kafka consumers read an 

entire record to access a specific field, whereas 

columnar storage on a data lake (e.g. Apache Parquet) 
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will allow you to directly access specific fields. 

● Data quality effort per consumer: Each Kafka consumer 

works in a vacuum, which means data governance is an 

issue that needs to be multiplied by the amount of 

consumers - which in turn means repetitive 

deduplication, schema management, and monitoring 

processes; a data lake allows you to unify these 

operations on a single repository.
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The Solution: Build a Data Lake 

We’ve explained why reading data directly from Kafka is messy, 

expensive and time-consuming. Most of these problems can be 

solved by introducing a data lake as an intermediary stage between 

your Kafka and the systems you use to analyze data. This approach is 

advantageous as it allows you to: 

● Leverage cheap storage on S3, allowing you to significantly 

increase retention without paying through the nose for storage. 

● Introduce new use cases without worrying about Kafka 

performance and stability: a data lake enables flexibility to 

introduce new consumers and applications, without slowing 

down your production environment. 

● Ensure data quality and governance by working on a single 

repository rather than individual topics.
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Kafka + Data Lake Reference 

Architecture (on AWS)

.
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The Real-time Caveat

You might have noticed a “Real-time Consumers” block in the 

diagram above, although we recommended reading data from a data 

lake and not directly Kafka. What’s going on?! Have we been lying to 

you this entire time? 

We haven’t but there is an important caveat, which is that the data 

lake architecture will not work for use cases that require an 

end-to-end latency of seconds. In such cases, for example as part of a 

fraud detection engine, you would need to implement an additional 

Kafka consumer that would only process real-time data (last few 

minutes) and merge the results with the results of a data lake 

process. This architectural pattern is named Lambda Architecture:
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The Data Lake Platform

Gartner estimates that 85% of big data projects fail, often due to lack 

of internal resources and knowledge, and the difficulty of managing 

complex architectures and data pipelines. 

Upsolver is here to change this reality with a complete Data Lake 

Platform that’s powerful, agile and simple enough for any developer 

to launch and maintain. 

Upsolver’s Data Lake Platform takes the complexity out of streaming 

data integration, management and preparation on any data lake - 

whether it's HDFS on-premise or on AWS, Azure or Google Cloud.

● Schedule a Demo.

● Start a Free Trial.

https://www.upsolver.com/schedule-demo
https://www.upsolver.com/free-trial

